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Abstract: Radio occultation (RO) sensor measurements have critical roles in numerical weather
prediction (NWP) by complementing microwave and infrared sounder measurements with infor-
mation of the atmospheric profiles at high accuracy, precision, and vertical resolution. This study
evaluates Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2)
wet temperature and humidity data products’ consistency and stability through inter-comparison
with SNPP advanced technology microwave sounder (ATMS) measurements. Through the com-
munity radiative transfer model (CRTM), brightness temperature (BT) at SNPP ATMS channels
are simulated with COSMIC-2 retrieved atmospheric profiles from two versions of the University
Corporation for Atmospheric Research (UCAR) wet profiles (WETprf and WETpf2) as inputs to
the CRTM simulation. The analysis was focused on ATMS sounding channels CH07–14 and CH19–
22 with sounding weighting function peak heights from 3.2 to 35 km. The COSMIC-2 vs. ATMS
inter-comparison indicates that their BT biases are consistent, and the latitudinal difference is <0.3 K
over three latitudinal regions. The differences between the two versions of UCAR COSMIC-2 wet
profiles are identified and attributed to the differences in the implementation of 1DVAR retrieval
algorithms. The stability between UCAR near real-time COSMIC-2 wet profile data and ATMS
measurements is also well-maintained. It is demonstrated that the well-sustained quality of COSMIC-
2 RO data makes itself a well-suited reference sensor to capture the calibration update of SNPP
ATMS. Furthermore, the impacts of the assimilation of COSMIC-2 data into the European Centre for
Medium-Range Weather Forecasts (ECMWF) model after 25 March 2020, are evaluated by trending
observation-minus-background (O-B) biases, which confirms the statistically significant positive
impacts of COSMIC-2 on the ECMWF reanalysis. The validation of stability and consistency between
COSMIC-2 and SNPP ATMS ensures the quality of RO and microwave sounder data assimilated into
the NWP models.

Keywords: COSMIC-2; SNPP ATMS; radiative transfer modeling; radio occultation; ECMWF

1. Introduction

With a continuous record from 1980 till now, the passive satellite microwave (i.e., mi-
crowave sounding unit (MSU) and the advanced microwave sounding unit (AMSU)) [1–5]
and infrared (IR) sounders (i.e., high-resolution infrared radiation sounders (HIRS)) [6,7]
have been used to detect long-term variations of atmospheric vertical thermal distri-
butions [8,9]. In addition, microwave (MW) temperature climate data records (CDRs)
generated by several groups [10] have been used to quantify the global warming signals in
both the troposphere and the lower stratosphere [11–14].

The advanced technology microwave sounder (ATMS) instrument onboard the Suomi
National Polar-orbiting Partnership (SNPP) spacecraft is the first in a series of next-
generation weather satellites of the Joint Polar Satellite System (JPSS), which was launched
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on 28 October 2011. The ATMS is a cross-track scanning microwave radiometer with
22 channels. It provides sounding observations for civilian operational weather forecast-
ing and continuity of these measurements for climate monitoring purposes. ATMS has
played a critical role in improving the global medium-range weather forecast and mon-
itoring/predicting severe weather events [15–20]. The antenna temperature (Ta) from
ATMS was constructed through onboard calibration procedures [15,16] and post-launch
validations [21–24]. However, it is hard to directly use the operationally calibrated ATMS
antenna temperatures for climate studies because of the lack of on-orbit anchor references.

The active RO technique provides invaluable information on the atmospheric density,
complementing the satellite IR and MW radiance measurements [17,25]. RO is the first
technique to provide a high-vertical-resolution all-weather bending angle and refractivity
profile [26–28]. With a priori information for the temperature and moisture, RO refractivity
can be further inverted to pressure, temperature, and moisture profiles in the neutral
atmosphere. The RO-retrieved bending angle can be directly assimilated into the weather
forecasting model without bias correction. Several global positioning system (GPS)-LEO
missions have shown that RO sensors can accurately measure atmospheric temperature
and improve global weather prediction [29]. The Constellation Observing System for
Meteorology, Ionosphere, and Climate (COSMIC-1) onboard Formosa Satellite Mission
3 has provided spatially uniform RO data since 2006. The neutral atmospheric profiles
retrieved from COSMIC-1 RO data have been demonstrated to be very useful for studying
atmospheric processes [25,30–43].

It was demonstrated that RO data are beneficial to identify the AMSU brightness
temperature (BT) biases for those lower stratosphere channels (channels 9–12) related to:
(i) solar zenith angle (SZA) dependence biases, (ii) inter-satellite biases, and (iii) local
time drift [44–46]. While RO temperature profiles in the lower stratosphere were used
to calibrate AMSU BT biases, Iacovazzi et al. [47] used COSMIC-1 GPS-RO soundings
over the ocean to quantify BT biases AMSU-A instruments which are onboard NOAA-18,
NOAA-19, MetOp-A, and MetOp-B, and ATMS onboard SNPP and NOAA-20. These
simulated COSMIC-1 BT values are compared to the observed antenna BT values of the
microwave sounders to compute monthly BT bias statistics for each instrument. Results
from [47] suggested that the GNSS RO soundings are critical to monitoring and trending
TDR biases of individual microwave radiometers. Furthermore, Zou et al. [48] estimated
the ATMS scan angle-dependent biases from channels 5 to 13 (where the weighting function
peak varies from 5 km to 30 km). This study used RO-derived BT as absolute references to
identify and correct viewing angle (sidelobe) biases.

Although RO raw data are traceable to a unit of time, the derived environmental
variables such as temperature and water vapor are not. The temperature and water vapor
profiles in the troposphere are retrieved from the refractivity profiles. Those retrievals are
relatively weighted from the observed information (refractivity) and the a priori used in
the one-dimensional variational (1DVAR) retrievals. The temperature retrieval uncertainty
may be more significant in the lower troposphere, where the variability of water vapor
contributes substantially to the refractivity.

As a COSMIC follow-on mission, the COSMIC-2 constellation with six satellites
onboard Formosa Satellite Mission 7 was successfully launched into a 24-degree inclination
low Earth orbit on 25 June 2019. Each of the six satellites in the COSMIC-2 constellation has
three instruments: the primary Tri-GNSS radio-occultation system (TGRS) payload, radio
frequency beacon, and ion velocity meter. The TGRS was designed with a steering beam
phase array antenna and advanced receiver to receive navigation signals from multiple
GNSS satellites. These include the US GPS, the European Galileo system, and the Russian
GLONASS (GLObal NAvigation Satellite System). Such design enhances RO signal quality
with a higher signal-to-noise ratio (SNR) and deeper penetration depth and increases the
number of successful RO retrievals [49–51]. COSMIC-2 routinely provides atmospheric and
ionospheric data to daily near-real-time (NRT) weather forecasts, climate studies, and space
weather monitoring and forecasts. Evaluations of assimilating COSMIC-2 data into the
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NWP systems show positive impacts of COSMIC-2 RO data on short- and medium-range
weather forecasts [52].

The initial validation shows that COSMIC-2 is compatible with the precision, stability,
and accuracy of COSMIC [50]. However, the consistency between COSMIC-2 and ATMS is
still unknown. This study examines the stability and consistency between COSMIC-2 and
the legacy SNPP ATMS instrument. Given the COSMIC-2 observation distribution, this
study focuses mainly on 45◦N to 45◦S in latitude.

We conducted the ATMS vs. COSMIC-2 comparisons on ATMS sounding channels
CH07 to CH14 with peak sounding height from 8 to 35 km and CH19 to CH22 with
sounding peak heights ranging from 3.2 to 6.7 km. With a high SNR, COSMIC-2 is of
deeper penetration compared to other RO missions. This provides a unique opportunity to
evaluate the water vapor profiles retrieved from COSMIC-2 using ATMS CH19 to CH22
observations. Two versions of COSMIC-2 wet profile (wet temperate and humidity pro-
file) data, e.g., WETPrf and WETPf2 that are processed by the University Corporation for
Atmospheric Research (UCAR), are evaluated. These two versions differ in the implemen-
tation of 1DVAR retrieval algorithms (see http://cdaac-www.cosmic.ucar.edu/cdaac/doc/
documents/1dvar.pdf (accessed on 1 September 2021) for WETPrf, and [53] for WETPf2).
A very tight constraint is applied to WETPrf in the 1DVAR. Only temperature and mois-
ture profiles are reported when the difference of the observed refractivity and forward
computed refractivity computed from the retrieved temperature and moisture profiles are
within the uncertainty of refractivity. This ensures that the refractivity measurements are
completely used in the 1DVAR (see [50], Section 2.2). However, in the WETPf2 (see [53]),
the observed refractivity may differ from the forward computed refractivity. Therefore, the
a priori information for WETPrf2 may contribute to the retrievals. More descriptions are in
Section 3.2.

To simulate BT data for ATMS channels, the temperature and humidity profile re-
trieved from COSMIC-2 refractivity data have been fed as inputs to the community ra-
diative transfer model (CRTM). Other inputs to the CRTM simulation are obtained from
the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis model-5
(ERA-5). Through inter-comparison between CRTM-simulated BT and ATMS BT, the con-
sistency and stability between COSMIC-2 and SNPP ATMS measurements are evaluated.
The differences in the bias and uncertainty characteristics between the two versions of
UCAR wet profile products are also assessed. The observation-minus-background (O-B)
bias of COSMIC-2 vs. ECMWF for ATM channels of interest is also derived through double-
difference of biases relative to ATMS, which enables monitoring the bias trend variation
after the assimilation of COSMIC-2 RO data into ECMWF on 25 March 2020 [52].

This paper is organized as follows. In Section 2, overviews of SNPP ATMS microwave
sounder and COSMIC-2 radio occultation sensor constellation are given. Section 3 illus-
trates the CRTM simulation setup and presents details and differences of the three sets of
temperature/humidity profiles used as inputs to the CRTM simulation. Section 4 presents
results from the CRTM-based inter-comparison between COSMIC-2 and ATMS and O-B
biases regarding biases, uncertainty, and stability. Finally, Sections 5 and 6 discuss and
summarize our studies.

2. Sensor Overview
2.1. COSMIC-2 Radio Occultation Sensor

The COSMIC-2 satellite system consisted of six small LEO satellites and was suc-
cessfully launched into equatorial orbit on 25 June 2019. With a 24-degree inclination
on the LEO orbit, COSMIC-2 provides comprehensive coverage of atmospheric profile
sounding in low and mid-latitude regions, i.e., from 45◦N to 45◦S. COSMIC-2 adopts
the TGRS receiver design with a steering beam phased array antenna to receive navi-
gation signals from US GPS signals and Russian GLONASS satellites in multiple radio
frequency bands. By combining high-performance GPS+GLONASS receiver and antenna
design, COSMIC-2 aims to increase the number of successful RO retrievals per satellite,

http://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/1dvar.pdf
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enhancing the GNSS-RO measurement quality and improving penetration depth in the
troposphere [49,50]. The constellation of six small satellites in COSMIC-2 provides as much
as ~5000 RO measurements per day. COSMIC-2 data became operational on 25 February
2020. On 16 March 2020, COSMIC-2 RO data were available to the public for atmospheric
and climate studies and NWP applications. COSMIC-2 is the first RO sensor that provides
routine GLONASS GNSS-RO measurements for operational NWP applications. Early
COSMIC-2 data quality has been evaluated in [49,50]. It was shown that COSMIC-2 had
increased signal-to-noise ratio (SNR) and deeper penetration depth. In addition, it has very
compatible stability, precision, accuracy, and uncertainty regarding accuracy with those
from COSMIC-1. Evaluations of assimilating COSMIC-2 data into the NWP systems show
positive impacts of COSMIC-2 RO data on weather prediction [52,54].

2.2. SNPP ATMS Instrument

The first ATMS microwave sounder onboard SNPP spacecraft was launched into orbit
on 28 October 2011. ATMS is currently onboard both SNPP and NOAA-20 spacecraft and
will be on the follow-on JPSS missions. ATMS is a cross-track scanner and provides sound-
ing observations to retrieve atmospheric temperature and moisture profiles for operational
numerical weather forecasting. ATMS also maintains the continuity of microwave sounder
measurements by the preceding AMSU and microwave humidity sounder (MHS) sen-
sors for climate monitoring purposes [15–20]. The ATMS covers 22 channels with central
frequency varying from 23 GHz through 183 GHz. Among the 22 bands of ATMS, the
first 16 channels primarily make sounding measurements of temperature from the surface
to about 1 hPa (~45 km), and ATMS CH17–22 (around the 183 GHz) perform humidity
soundings from the surface to ~200 hPa (~15 km) in the troposphere. The scan angle of
the ATMS instrument is ±52.725◦ from nadir. It has a swath width of 2700 km by taking
96 field of view measurements along the scan direction. The onboard calibration of ATMS
is carried out by measuring the background offset through space view and observing a
well-characterized and precisely temperature-controlled internal blackbody during each
revolution scan of the reflector antenna. The radiometric accuracy and long term stability
of microwave radiometers are maintained through calibration and validation techniques
such as:

i) inter-comparison among microwave sounder measurements with simultaneous nadir
overpass (SNO) methods [21,22]

ii) long term monitoring of stable cold or warm vicarious targets, and global mean [23]
iii) observation-minus-background (O-B) bias monitoring, and
iv) observation of the Moon [24].

This study focuses on inter-comparing COSMIC-2 temperature and humidity profiles
with the collocated measurements from SNPP ATMS sounding channels CH07 to CH14
and ATMS CH19 to CH22. Figure 1 shows the weighting functions of ATMS channels
of interest using the 1976 US standard model atmosphere. ATMS CH07 to CH14 have
peak-sounding heights varying from 8.06 to 35.66 km, while ATMS CH19–CH22 have
sounding peak heights ranging from 3.18 to 6.66 km. Table 1 summarizes the peak sounding
height, central frequency, 3 dB beamwidth, and specified accuracy and NEDT of ATMS
channels studies in this paper. ATMS CH07 to CH14 are temperature-sounding channels.
ATMS CH19–CH22 are moisture-sounding channels with a center frequency around 183
GHz. In this study, the ATMS sensor data record (SDR) has been evaluated and referred
to as ATMS BT data at channels of interest. The ATMS SDR is converted from ATMS
temperature data record (TDR) by accounting for beam efficiencies and corrections of
near-field sidelobe contributions.
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Figure 1. The weighting function and peak sounding height of SNPP ATMS channels CH07–CH14
and CH19–22 studied in this paper.

Table 1. Characteristics of ATMS channels studied in this paper.

ATMS Channel Central Frequency (GHz) Peak Sounding
Height (km) 3 dB Beam Width (◦) Specified Accuracy

and NEDT (K)

CH07 54.40 8.06 2.2 0.75/0.7
CH08 54.94 10.61 2.2 0.75/0.7
CH09 55.50 13.08 2.2 0.75/0.7
CH10 57.290344 17.10 2.2 0.75/0.75
CH11 57.290344 ± 0.217 20.89 2.2 0.75/1.2
CH12 57.290344 ± 0.3222 ± 0.048 25.84 2.2 0.75/1.2
CH13 57.290344 ± 0.3222 ± 0.022 30.87 2.2 0.75/1.5
CH14 57.290344 ± 0.3222 ± 0.010 35.66 2.2 0.75/2.4
CH19 183.31 ± 4.5 3.18 1.1 1/0.8
CH20 183.31 ± 3.0 4.27 1.1 1/0.8
CH21 183.31 ± 1.8 5.58 1.1 1/0.8
CH22 183.31 ± 1.0 6.66 1.1 1/0.9

3. CRTM-Based Radiative Transfer Modeling for Inter-Comparison of COSMIC-2
and SNPP ATMS Measurements
3.1. Radiative Transfer Model Setup

This study uses the CRTM (V2.1.3) to perform radiative transfer modeling (RTM) simu-
lations. The CRTM was developed and maintained by U.S. JCSDA and can be downloaded
from ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.1.3/ (accessed on 1 September
2021) [55]. The CRTM is a fast sensor-channel-based RTM tool for simulating satellite-
measured radiances for infrared or microwave radiometers by quantitatively accounting
for reflection and radiation emission by the Earth’s surface, gaseous absorption in the
atmosphere, and scattering and absorption of radiation by clouds and aerosols. It has been
widely used to calibrate and assimilate infrared and microwave sensor data and remote
sensing applications [56,57]. Given the spectral response data of a new sensor, spectral
and transmittance coefficient parameter files need to be created to set up the new sensor’s
CRTM simulation. The CRTM package provides comprehensive functions such as forward,

ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.1.3/
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adjoint, tangent-linear, and K-matrix models to meet users’ modeling needs. The inputs
to the CRTM include atmospheric profiles of water vapor, temperature, pressure, CO2,
ozone, and other variable gas concentration at layers defined by the user, aerosol-related
characteristic parameters, cloud types, cloud parameters, and surface property parameters
such as skin temperature, emissivity, wind speed, and direction. The CRTM computes the
satellite-measured thermal radiation radiance and BT at microwave sensor frequencies for
the microwave sensor simulation.

Figure 2 illustrates the CRTM simulation setup for modeling radiometric BT at ATMS
sounding channel frequencies with the temperature/humidity profile data from the RO
sensor as inputs. We have used three sets of temperature/humidity data as inputs to
the CRTM simulation, compared in detail in Section 3.2. Other inputs to the CRTM
simulation include surface parameters such as skin temperature, wind speed, and wind
direction. These data are obtained from ECMWF re-analysis (ERA) single-level data based
on six-hourly increments. The mixing ratio profile of ozone is also obtained from ERA5
data, coordinated at 37 mandatory pressure levels varying from ground to ~0.1 hPa. The
ERA global atmospheric and climate reanalysis dataset is produced from 4DVAR data
assimilation, blends or assimilates observations with a previous NWP forecast to get the
best fit. The data from ERA have been collected with 0.5◦ spatially gridded resolution,
which is equivalent to a spatial resolution of ~50 km at the equator. As a reference, the
footprint size of SNPP ATMS varies with channels. The ATMS CH07–14 has an antenna
beamwidth of 2.2◦ and nadir footprint sizes of 31.6 km, while the ATMS CH19–22 has a
beamwidth of 1.1◦ and corresponding footprint sizes of 15.8 km at nadir. In this study,
the CRTM simulations are focused on the ocean surface, and effects from the cloud or
aerosols are not considered in the simulation. The surface emissivity model used in the
CRTM simulation is based on the default CRTM oceanic surface model at ATMS channel
frequencies. The main reason for focusing on the comparison over oceans is due to the
challenges of handling the variability of land surface emissivity and surface temperature
in the CRTM model. The selection of the ocean as the site of interest makes the required
spatial uniformity of surface emissivity and surface temperature in the radiative transfer
modeling easier to be satisfied.

As shown in Figure 2, the CRTM simulations were carried out with time-varying
surface and atmospheric profile data as inputs. To prepare for the CRTM simulation,
collocated time and position data between SNPP ATMS orbital nadir location and the
COSMIC-2 RO profiles’ perigee location are first collected over oceans. These collocation
data between SNPP/ATMS and COSMIC-2 are used to collect SNPP ATMS, COSMIC-
2, and ECMWF ERA5 data for the simulation and comparison. Spatial and temporal
interpolations of ERA surface and ozone profile parameters over the collocated RO and
ATMS locations are performed to derive the additional input parameters to the CRTM. Each
CRTM simulation outputs BT data for the corresponding ATMS channels. The simulated
BT data from CRTM over collocations are further compared with the ATMS measurements
to analyze COSMIC-2 vs. SNPP ATMS bias and uncertainty.
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Figure 2. RTM simulation setup with CRTM as the simulator for inter-comparison between SNPP
ATMS and COSMIC-2 measurements.

3.2. Temperature and Humidity Profile Data Inputs to the CRTM Simulation

As shown in Figure 2, the CRTM simulation requires inputs of atmospheric tempera-
ture and moisture profile data. This study has fed three sets of temperature/humidity data
(listed in Table 2) into CRTM simulations to output the simulated BT data for ATMS chan-
nels. The difference and consistency among the CRTM simulations using these three inputs
are evaluated by comparing ATMS BT measurements for the corresponding ATMS chan-
nels. Among these three sets of temperature/humidity profile data, COSMIC-2 Wet Profile
(WETPrf) and Wet Profile #2 (WETPf2) data are obtained from UCAR retrievals and their
differences are discussed below. In addition, the background temperature and humidity
data from ECMWF reanalysis version 5 data [ERA5 (fifth generation ECMWF atmospheric
reanalysis)] are used in CRTM simulation to enable the derivation and monitoring of the
O-B biases.

Table 2. Temperature/humidity profile data sets used in the CRTM modeling for COSMIC-2 vs.
SNPP ATMS inter-comparison.

Data Set Name Provided by Time Coverage

UCAR-WETPrf. UCAR 1 October 2019 to 31 October 2019
UCAR-WETPf2 UCAR 1 October 2019 to 31 December 2020

ERA5 (background) ECMWF 1 October 2019 to 31 December 2020

The retrievals of RO limb-sounding data first derive vertical profiles of bending angle
and refractivity from the excess phase data processed from the Doppler-shifted raw radio
signals transmitted by GNSS satellites and propagate through the atmosphere. Then, to
determine the wet temperature and water vapor profiles of the Earth’s atmosphere from
bending angle or refractivity data, the 1DVAR algorithm is applied to find a solution to
an under-determined problem. The 1DVAR retrieval generally uses a priori state of the
atmosphere, i.e., vertical background temperature and humidity profile, an observable
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such as RO refractivity or bending angle data, and associated background and observation
uncertainties/error covariance matrices (ECM) to minimize a quadratic cost function.
Therefore, different implementation of 1DVAR retrieval algorithms can result in different
bias and uncertainty characteristics in the retrieved wet temperature and water vapor
profiles. Indeed, this is the case for the two versions of the COSMIC-2 wet profile data
processed by UCAR.

As listed in Table 2, we analyzed two versions of wet profile data produced by UCAR
from COSMIC-2 RO data, namely WETPrf (https://cdaac-www.cosmic.ucar.edu/cdaac/
products.html accessed on 1 September 2021) and WETPf2 (https://data.cosmic.ucar.edu/
gnss-ro/cosmic2/nrt/ accessed on 1 September 2021). The UCAR COSMIC-2 WETPrf
data was generated with the heritage 1DVAR algorithm at CDAAC previously used to
produce COSMIC-1 wet temperature and humidity profile data. In the 1DVAR algorithm
for WETPrf, background profiles are taken from ECMWF gridded low-resolution reanalysis
data interpolated to the time and location of RO measurements to separate the pressure,
temperature, and moisture contributions to the refractivity. Unfortunately, the UCAR
COSMIC-2 WETPrf data were only available for one month in October 2019.

In the official release of NRT COSMIC-2 RO data in October 2019, UCAR implemented
a new 1DVAR retrieval algorithm [53], i.e., WETPf2, to process COSMIC-2 data. Several
changes have been implemented in the 1DVAR retrieval algorithm of WETPf2 data com-
pared to the previous WETPrf algorithm. These changes include the use of statistical
observation error, consistent background error with correlations to multi-variate, and ECM
with higher spatial (10◦ × 10◦) and temporal (monthly) resolution in comparison with the
previous ECM with limited three latitude range and four seasonal dependence [53]. The
WETPf2 retrieval algorithm also implemented variational Abel transform for bending angle
optimization and took into account terrain variation by incorporating a digital elevation
model. Additionally, UCAR WETPf2 data are processed using analysis data from the
Global Forecasting System (GFS) of NOAA National Centers for Environmental Prediction
(NCEP) to initialize the model. In contrast, the old UCAR WETPrf software uses ECMWF
data as the initial guess for the 1DVAR retrieval. The UCAR WETPf2 data has been avail-
able in NRT since 1 October 2019. This paper analyzed UCAR COSMIC-2 WETPf2 data
from 1 October 2019, to 31 December 2020. However, due to the update of UCAR’s 1DVAR
algorithm for the NRT Wetpf2 product after 25 September 2020, there are noticeable bias
changes after this day. Therefore, the biases and uncertainties we analyzed in this paper
are focused on over a ~1 year period from 1 October 2019, to 20 September 2020.

Both UCAR WETPrf and WETPf2 profile data contain latitude and longitude of the
RO perigee point, temperature, pressure, specific humidity profile, and mean sea level
height. The WETPrf profile data is interpolated to 100 m height intervals. The WETPf2 was
sampled to ~800 layers.

With the implementation of the above changes in the UCAR COSMIC-2 WETPf2
data, it is expected that there will be differences in the retrieved wet temperature and
humidity data in comparison with those processed with the UCAR WETPrf algorithm.
As summarized in Table 2, one month of WETPrf data in October 2019 for COSMIC-2
overlapped the WETPf2 data. In this work, the biases between CRTM-simulated BT using
WETPrf data and ATMS measurements are compared with the biases derived with WETPf2
data to evaluate their differences in terms of biases and uncertainties. In addition, the
long-term UCAR WETPf2 data from 1 October 2019, to 20 September 2020, are also used
to evaluate the stability consistency between COSMIC-2 and ATMS for ATMS CH07–14
and CH19–22.

Furthermore, the long-term global temperature and humidity profile data from ERA5
can be used to replace COSMIC-2 RO data in Figure 2 and feed directly into the CRTM
to derive BT data for ATMS channels over the same period. Using the double-difference
method (see Section 4.3 for more details) and ATMS BT as the reference, the O-B biases can
be derived with BTs from the CRTM simulations with COSMIC-2 or ERA5 data as inputs.
The O-B bias trending enables monitoring of the variation of COSMIC-2 vs. ERA5 biases

https://cdaac-www.cosmic.ucar.edu/cdaac/products.html
https://cdaac-www.cosmic.ucar.edu/cdaac/products.html
https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/
https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/
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for ATMS channels of interest before and after the assimilation of COSMIC-2 RO data into
ECMWF [52].

3.3. Collocation and Data Screening Scheme

In the COSMIC-2 vs. SNPP ATMS inter-comparison study, the data associated with
the COSMIC-2 RO soundings and the SNPP ATMS measurements must be screened and
collocated. In this study, collocated RO and ATMS data are collected, and the areas of
interest are confined to be over low to mid-latitude ocean regions equatorward within
48◦ latitude. The collocation criteria are set with a time difference of no more than 2 h
and a spatial distance of less than 150 km. Such matching criteria are used to ensure
enough matched collocation cases (~2700 per month) after quality screening for statistical-
significant bias and uncertainty analysis. The spatial difference is defined as the difference
between the perigee point location of RO profile and SNPP ATMS nadir to minimize the
viewing geometry effect of SNPP ATMS. In addition, for COSMIC-2 RO profiles with
attribute flags ‘bad’ = 1, ‘L2P’ = 1 or ‘snr2avg’ < 300 v/v are all screened out to ensure
consistencies in the RO data quality (personal communication with COSMIC Data Analysis
and Archive Center (CDAAC). Figure 3 shows the global distributions of collocations in
the 2◦ × 2◦ grid between six satellites in the COSMIC-2 constellation and SNPP ATMS over
the ocean during the interval from 1 October 2019 to 31 December 2020. In total, there are
2789 matched COSMIC-2 RO profiles with SNPP ATMS for UCAR WETPrf data product
in October 2019, and there are 42,315 matched profiles with good quality (after quality
screening) for UCAR WETPf2 over ~15 months from 1 October 2019 to 31 December 2020.
BT biases over valid scenes each day are combined to derive characteristic daily BT bias
(mean), and its uncertainty (standard deviation) for each ATMS channel analyzed. The
daily time series of BT biases are further analyzed to evaluate the stability.

Figure 3. Global collocation distribution (number of collocations in 2◦ × 2◦ grid) between COSMIC-2
RO and SNPP ATMS measurements over the ocean.

4. Results
4.1. Bias and Stability between Simulated BT from COSMIC-2 Retrievals and SNPP
ATMS Measurements

In this section, the CRTM-simulated BT data using COSMIC-2 wet temperature and
specific humidity profiles from either UCAR WETPrf or WETPf2 data products as inputs
have been analyzed and referred to BTCOSMIC-2,WETPrf, and BTCOSMIC-2,WETPf2, respectively.
These simulated BT data are compared with SNPP ATMS measurements to derive the
BT bias, i.e., ∆BT = BTCOSMIC-2 − BTATMS, for the ATMS channels of interest, e.g., CH07-
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14 and CH19–22. Since UCAR WETPrf data are only available over one month during
October 2019, the comparison with ATMS BT data is focused on evaluating relative BT
bias (∆BTWETPrf) and associated uncertainty. For UCAR-WETPf2 data, we assess both the
long-term consistency and stability between BTCOSMIC-2, WETPf2, and ATMS measurements
over the fifteen months from 1 October 2019, to 31 December 2020.

Figures 4 and 5 show the BT bias (∆BTWETPf2) trending between BTCOSMIC-2,WETPf2,
and SNPP ATMS measurements for ATMS CH07–14 and CH19–22, respectively. The change
of ∆BTWETPf2 after 15 October 2019, can be identified due to the calibration update of SNPP
ATMS on 15 October 2019. Major SNPP ATMS calibration updates were implementations
of antenna reflector emission correction algorithm update and antenna pattern correction
coefficients update on 15 October 2019. The step changes in Figures 4 and 5 indicate that
the COSMIC-2 data’s stability is sensitive enough to capture the calibration update of SNPP
ATMS on 15 October 2019.

Figure 4. Trending of BT bias between BTCOSMIC-2, WETPf2, and SNPP ATMS measurements over
15 months from 1 October 2019, to 31 December 2021, for ATMS CH07–14. Vertical lines at
25 September 2020 mark when UCAR implements a WETPf2 1DVAR algorithm update.
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Figure 5. Trending of BT bias between BTCOSMIC-2,WETPf2, and SNPP ATMS measurements over
15 months from 1 October 2019, to 31 December 2020, for ATMS CH19–22. Vertical lines at
25 September 2020 mark when UCAR implements a WETPf2 1DVAR algorithm update.

In Figures 4 and 5, due to a possible code change (personal communication) in the
UCAR’s 1DVAR algorithm for NRT Wetpf2 product after 25 September 2020, there are
noticeable bias changes after this day (marked with vertical lines), especially noticeable
for ATMS CH19–22. The reason for the sudden change of the quality of UCAR Wetprf2
is discussed in [58] and is not further discussed here. Hereafter, we focus on the bias and
uncertainty analysis from 15 October 2019, to 20 September 2020, for UCAR WETPf2 data.

To evaluate the variations of relative biases and associated uncertainties between
BTCOSMIC-2,WETPf2, and SNPP ATMS measurements, the multi-channel ∆BTWETPf2 time-
series data before and after 15 October 2019, as shown in Figures 4 and 5, are processed to
calculate the mean bias µ(∆BTWETPf2) and associated uncertainty σ(∆BTWETPf2). Table 3
summarizes the comparison of mean biases. It can be seen that the SNPP ATMS calibration
update implemented on 15 October 2019, effectively reduced the biases between SNPP
ATMS measurements and BTCOSMIC-2, WETPf2 for ATMS CH07, and CH10–14. For the
humidity sounding channels CH21–22 of ATMS, the biases became larger, which might
be related to the significant uncertainties (~1.7 and 2.2 K, respectively) associated with
these two ATMS channels. The bias trending results shown in Figures 4 and 5 demonstrate
that the GNSS signal retrieval-based COSMIC-2 RO sensor may serve as a reference
sensor to detect and monitor the channel bias change and stability variation of microwave
sounding sensors due to the calibration updates such as corrections in antenna reflector
emission coefficient and antenna pattern, sensor response degradation, and the anomaly or
other causes.
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Table 3. Summary of mean BT biases µ(∆BT) and trending slope D(∆BTWETPf2) ± 95% Confidence Interval (CI) between
CRTM-simulated BT data with COSMIC-2 UCAR WETPrf or WETPf2 temperature/humidity data as inputs and SNPP
ATMS measurements for ATMS CH7–CH14 and CH19–H22.

ATMS Channel Peak Sounding
Height (km)

µ(∆BTWETPrf) ±
σ(∆BTWETPrf) (K)

µ(∆BTWETPf2) ±
σ(∆BTWETPf2) (K)

µ(∆BTWETPf2) ±
σ(∆BTWETPf2) (K)

D(∆BTWETPf2) ±
95% CI (K/Year)

16 October 2019–31
October 2019

1 October 2019–15
October 2019

16 October 2019–20
September 2020

16 October 2019–20
September 2020

CH07 8.06 −0.31 ± 0.64 −0.53 ± 0.34 −0.12 ± 0.39 0.003 ± 0.019
CH08 10.61 0.63 ± 0.39 0.54 ± 0.23 0.68 ± 0.24 −0.003 ± 0.008
CH09 13.08 0.58 ± 0.47 0.64 ± 0.28 0.64 ± 0.30 0.011 ± 0.012
CH10 17.10 0.32 ± 0.72 0.65 ± 0.44 0.42 ± 0.47 0.004 ± 0.021
CH11 20.89 0.21 ± 0.91 0.54 ± 0.46 0.29 ± 0.48 0.064 ± 0.021
CH12 25.84 0.13 ± 1.32 0.36 ± 0.48 0.24 ± 0.53 0.146 ± 0.026
CH13 30.87 0.18 ± 2.04 0.41 ± 0.71 0.31 ± 0.74 0.193 ± 0.033
CH14 35.66 0.35 ± 2.92 0.57 ± 1.02 0.33 ± 1.05 0.208 ± 0.054
CH19 3.18 0.30 ± 0.97 0.23 ± 0.87 −0.14 ± 0.87 0.056 ± 0.035
CH20 4.27 0.04 ± 1.28 0.29 ± 1.21 −0.27 ± 1.16 0.018 ± 0.051
CH21 5.58 −0.35 ± 1.71 0.02 ± 1.66 −0.47 ± 1.62 −0.006 ± 0.080
CH22 6.66 −1.01 ± 2.16 −0.45 ± 2.15 −0.99 ± 2.15 −0.066 ± 0.115

4.1.1. Bias and Uncertainty Analysis

To evaluate the bias and uncertainty of different UCAR 1DVAR retrievals in compari-
son with SNPP ATMS measurements, the simulated BT from UCAR COSMIC-2 WETPrf
and WETPf2 data are compared with ATMS measurements to calculate mean bias µ(∆BT)
and uncertainties σ(∆BT). The resulting µ(∆BT) and σ(∆BT) for the ATMS channels of
interest are summarized in Table 3 and Figure 6. In the comparison of UCAR COSMIC-2
WETPrf, the bias and uncertainty [µ(∆BTWETPrf) and σ(∆BTWETPrf)] are derived from data
collected during 16 October to 31 October 2019. As noted before, due to the update of
UCAR’s 1DVAR algorithm for the NRT Wetpf2 product after 25 September 2020, the bias
and uncertainty [µ(∆BTWETPf2) and σ(∆BTWETPf2)] for the comparison of UCAR COSMIC-2
WETPf2 are derived from data collected between 16 October 2019, and 20 September 2020.

In Figure 6a, the mean BT biases of both µ(∆BTWETPrf) and µ(∆BTWETPf2) are consistent
in both magnitude and sign for ATMS CH07–14, CH21, and CH22. In particular, the
magnitudes of BT biases for ATMS CH07, CH10–14, CH19, and CH20 are all within 0.4 K
for both µ(∆BTWETPrf) and µ(∆BTWETPf2). The BT biases of ATMS CH08, CH09, and CH22
are consistent of larger magnitude in comparison with other ATMS channels for both
µ(∆BTWETPrf) and µ(∆BTWETPf2). The relatively more significant BT biases of these three
channels can be because these channels of ATMS cover a significant portion of the vertical
height (below 10 km) impacted by both retrieved temperature and water vapor. The biases
in the inputs over this height to the CRTM modeling can dominate the BT biases. On the
other hand, the residual BT biases for all of these ATMS channels are stable, as shown in
Figures 4 and 5, and in the next section with quantitative stability consistency analysis.

In Figure 6a, the BT biases, µ(∆BTWETPrf) and µ(∆BTWETPf2), of ATMS CH19 and
CH20 with sounding peak heights at 3.18 and 4.27 km, respectively, have an opposite
sign. These differences are mainly due to the intrinsic difference in the 1DVAR retrievals
of UCAR COSMIC-2 WETPrf and WETPf2, such as different treatments of the open-loop
data below 7 km. As introduced in Section 3.2, UCAR WETPf2 employs NCEP GFS
analysis data as 1DVAR a priori, different from the ERA5 data used as the initial guess for
WETPrf. Other changes implemented in WETPf2 may also contribute to the differences
seen in Figure 6a. Figure 7a,b show the temperature and humidity profile biases and
uncertainties between COSMIC-2 WETPrf and WETPf2 data in October 2019 through direct
comparison. It confirms that while overall temperature and humidity biases are consistent
above 7 km between UCAR COSMIC-2 WETPf2 and WETprf data, there are significant
biases in temperature and humidity over height regions below 7 km altitude. The most
considerable temperature biases between WETPrf and WETPf2 occurred at a height below
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2.5 km, with WETPf2 being less than WETPrf. For the ATMS moisture-sounding channels
CH19 and CH20, their sounding height coverage varies from near the surface to ~7 km.
The integral effects of temperature and humidity biases between WETPrf and WETPf2
can result in the negative µ(∆BTWETPf2) vs. positive µ(∆BTWETPrf) for these two channels.
Such a model-dependent discrepancy in the ATMS troposphere sounding channels needs
further investigations, especially on the open-loop data treatment in the 1DVAR retrieval.

Figure 6. Summary of (a) mean BT bias µ(∆BT) and (b) uncertainty σ(∆BT) between CRTM-
simulated BT with COSMIC-2 UCAR WETPrf or WETPf2 data as inputs and SNPP ATMS mea-
surements for ATMS CH07–14 and CH19–22. (c) Derived trending slope D(∆BTWETPf2) of CRTM-
simulated COSMIC-2 WETPf2 data compared with ATMS measurements from 16 October 2019, to
20 September 2020.

It is also found from Figure 6a that µ(∆BTWETPf2) of ATMS CH07 and CH19–CH22
with sounding peaks in the troposphere are all negative. Such systematic negative biases
may come from the inputs’ biases to the CRTM modeling, such as moisture data from
UCAR 1DVAR WETPf2 retrievals in the troposphere. Due to the multi-path propagation of
GNSS signals in the troposphere, which is affected by refractions through the atmosphere
with moisture, pressure, and temperature profile variations, wave optics algorithm is used
to retrieve bending angles near the surface depending on the open-loop model. Previous
analysis showed negative bending angle biases near the surface in COSMIC-2 RO data [40].
Due to the height-integration effects of these ATMS troposphere sounding channels, the
bending angle’s negative bias can contribute to the µ(∆BTWETPf2) biases seen in Figure 6a.
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Figure 7. (a) Temperature (T) and (b) specific humidity (SH) profile difference (solid line) and
uncertainty (dashed line) vs. mean sea level (MSL) height between UCAR COSMIC-2 WETPrf
and WETPf2 data in October 2019. (c) Fractional refractivity (%) difference between refractivity
derived from UCAR COSMIC-2 WETPrf data and refractivity read directly from UCAR ATMPrf.
(d) Fractional refractivity (%) difference between refractivity derived from UCAR COSMIC-2 WETPf2
data and that read directly from UCAR ATMPrf data.

Figure 7c,d further show the comparison of refractivity derived from UCAR WETPrf
and WETPf2, e.g., (NWETprf and NWETPf2), with NATMPrf read directly from UCAR ATMPrf
data, respectively. UCAR ATMPrf data contains the refractivity data derived directly from
the bending angle profile, which entails the RO measurement data before 1DVAR retrieval.
As we can see, the 1DVAR retrieval algorithm difference between UCAR WETPrf and
WETPf2 exemplifies the fractional refractivity difference compared with the refractivity
from UCAR ATMPrf. In particular, the mean bias is consistent between NWETPrf and
NATMPrf while NWETPf2 deviates from NATMPrf at a height below 5 km and above 25 km,
which can also be observed from our COSMIC-2 vs. ATMS bias analysis. Therefore,
differences between UCAR COSMIC-2 WETPrf and WETPf2 can be identified through
comparison with ATMS.

Figure 6b shows the comparison of BT bias uncertainties between σ(∆BTWETPrf) and
σ(∆BTWETPf2). Significant reduction of σ(∆BTWETPf2) for ATMS CH08-14 can be seen in
comparison with σ(∆BTWETPrf). In particular, there are more than two times reduction
in σ(∆BTWETPf2) for ATMS CH12–14 with peak sounding height above 20 km in com-
parison with σ(∆BTWETPrf). For the troposphere sounding channels such as CH19-22
with peak sounding height below 10 km, the magnitudes of BT bias uncertainty is com-
parable between σ(∆BTWETPrf) and σ(∆BTWETPf2). For ATMS CH07 to CH11 with peak
sounding heights varying from 10 to 20 km in the stratosphere, their BT bias uncertainties
are in general less in comparison with those in the troposphere for both σ(∆BTWETPrf)
and σ(∆BTWETPf2). The relatively larger uncertainty in the troposphere sounding chan-
nels, e.g., ATMS CH19–22, can be due to the sensitivity of the retrieval algorithm to the
moisture troposphere.

The systematic and substantial reduction in the BT bias uncertainty of σ(∆BTWETPf2)
for ATMS CH07-14 in comparison with σ(∆BTWETPrf) can be attributed to the 1DVAR
algorithm updates implemented for WETPf2 as mentioned in Section 3.2. In general, the
initial guess or a priori from gridded analysis or short-term forecast data plays an essential
role in the 1DVAR retrieval process to separate the pressure, temperature, and moisture
contributions to refractivity. ERA5 and NCEP GFS model data serve as a priori in retrieving
WETPrf and WETPf2 data. Both of them assimilate ATMS and other microwave sounder
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data. The reduction in the BT bias uncertainty may have contributions from the a priori. In
addition, other improvements such as advanced statistical optimization in WETPf2 can
also contribute to uncertainty reduction.

In summary, the difference can be attributed to the difference in the location, atmo-
spheric, and a priori-dependence of the 1DVAR model of WETPf2. Therefore, the current
analysis could not conclude the exact causes of the uncertainty reduction for ATMS CH08-
14. Independent validations such as inter-comparison of COSMIC-2 RO data with in-situ
radiosonde measurements [50,58,59] can further help determine or validate the observed
uncertainty reduction in UCAR WETPf2 products.

4.1.2. Long-Term Stability Analysis

Figures 4 and 5 show that long-term stability between COSMIC-2 and ATMS are
generally maintained after 15 October 2019, for all ATMS channels of interest. To quan-
titatively evaluate the relative stability between COSMIC-2 and ATMS, the drifts of BT
biases shown in Figures 4 and 5 for ATMS channels of interest are calculated by fitting the
BT bias data between 16 October 2019 and 20 September 2020 (11 months) with a linear
function. The resulting slope D(∆BTWETPf2) is defined as the BT bias’ drift and used as a
metric for stability evaluation. The associated 95% confidence interval (CI) of the slope is
also calculated. Table 3 and Figure 6c show the drift and associated 95% CI of COSMIC-2
WETPf2 data compared with ATMS through CRTM modeling.

During the 11-month inter-comparison through CRTM, the stability between modeled
BT from COSMIC-2 and ATMS measurements is consistent with BT bias drift D(∆BTWETPf2)
< 0.02 K/year for ATMS CH07-10 and CH20, and ~0.06 K/year for ATMS CH11 and CH19.
This suggests that the CRTM-based BT bias inter-comparison can detect the temperature
stability variation of the magnitude ~0.02 K/year for ATMS CH07-10 over the height
region below 20 km. In addition, the accuracy and stability of ATMS CH19–20 suggest
that the RO data can be used to monitor the stability and calibration updates of these two
moisture-sounding channels of ATMS.

The D(∆BTWETPf2) of the remaining ATMS channels, such as CH13 and CH14 with
peak sounding height above 30 km, are 0.19 ± 0.03 and 0.21 ± 0.05 K/year, respectively.
This suggests that it is of greater uncertainty to use a short period (<1 year) of COSMIC-2
data to calibrate these ATMS channels with peak sounding height above 30 km. The
increase in NEDT for these ATMS channels with high peak sounding heights and the larger
collocation horizontal distance due to the RO limb sounding contribute to the uncertainty
in D(∆BTWETPf2) for these two channels.

For ATMS CH07-11, the 95% CI is all within 0.02 K/year. The 95% CI for ATMS
CH21-22 is larger than CH07-12, which indicates the trending slope is of more considerable
uncertainties. This is mainly due to the moisture sensitivity of ATMS CH21-22, which has
a sounding peak height of 5.5–6.6 km in the troposphere. The time-series data analyzed
in this paper is over eleven months, which is still relatively short in terms of stability
evaluation. Therefore, the trending numbers in Table 3 between ATMS and COSMIC-2 are
intended to be only used as references to evaluate the relative stabilities among different
ATMS channels. It is noted that a longer period and consistently processed COSMIC-2 data
are needed to evaluate the stability more precisely. Nevertheless, this analysis demonstrates
that the combination of CRTM simulation and COSMIC-2 RO data enables detecting bias
variations in ATMS sounding channels. With multi-year COSMIC-2 and ATMS data being
accumulated, the stability evaluation based on COSMIC-2 vs. ATMS BT bias drifts can be
more accurate with less uncertainty, especially for ATMS CH12–CH14 and CH21-22. Thus,
the GNSS RO observations are an ideal reference standard to monitor the stability variation
in microwave sounder measurements.

4.2. Latitude and Solar Zenith Angle-Dependence of COSMIC-2 vs. SNPP ATMS Biases

The six small satellites within the COSMIC-2 constellation maintain a 24-degree
orbital inclination angle, and the latitude coverages of their RO measurements vary from
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the equator to mid-latitude. To study the latitude-dependent difference between CRTM-
simulated BTs from UCAR WETPrf and WETPf2 data, we show the scatter plots of ATMS
BT vs. BTWETPrf (left column) and ATMS BT vs. BTWETPf2 (right column), respectively, in
Figure 8, for selected ATMS channels, e.g., CH08, CH10, CH12, CH13, and CH20. The
data are grouped with color-coding into three latitudinal regions: −48◦ to −30◦, −30◦

to 30◦, and 30◦ to 48◦ in latitude. There are strong linear correlations for ATMS CH08,
CH10, and CH20 compared to ATMS BT and CRTM-simulated BT for COSMIC-2 WETPrf
and WETPt2 data. However, for ATMS CH12 and CH13, the correlations between ATMS
BT and BTWETPrf (BT from COSMIC-2 WETPrf) in Figure 8e,g are much less linear (more
scattered) in comparison with those shown in Figure 8f,h. As shown in Figure 8e,g, the
ATMS BT vs. BTWETPrf comparisons over the latitude region −30◦ to 30◦ are much larger
scattering than those over the southern and northern high latitude regions. The main
reason for such difference is that the UCAR WETPf2 model is closer to the background
model over height regions of ATMS CH12 and CH13 than the UCAR WETPrf model due
to different weighting of the a priori model in the 1DVAR retrieval model construction.

Next, we focus on investigating the latitudinal dependence of ∆BTWETPf2 of UCAR
COSMIC-2 WETPf2 data. The ∆BTWETPf2 bias data are collected over three latitude regions
covering southern (−48◦ to −30◦ latitude) and northern (30◦ to 48◦ latitude) mid-latitudes
and near equator tropics (−30◦ to 30◦ latitude). Figure 9 shows the mean biases and
uncertainties of ∆BTWETPf2 calculated over these three latitude regions with the data
from 15 October 2019, to 20 September 2020. In general, the simulated COSMIC-2 BT is
consistent with ATMS measurements over these three latitude regions by having relative
µ(∆BTWETPf2) within 0.3 K for all ATMS channels of interest. For ATMS CH08, CH09, CH11,
and CH19, the differences in µ(∆BTWETPf2) among these three latitude regions are within
0.15 K. Figure 10a,b show examples of relatively uniform distributions of ∆BTWETPf2 for
ATMS CH08 and CH09, respectively. However, for ATMS CH07, CH10, Ch12, CH13, CH14,
and CH20-21, the difference of µ(∆BTWETPf2) among three latitude regions is relatively
larger (>0.25 K). For example, such remnant latitude-dependent biases can be seen in
Figure 10c,d for ATMS CH10 and CH12, respectively. In Figure 10c, the ∆BTWETPf2 is
generally smaller in the southern and northern mid-latitude regions than in the equatorial
region for ATMS CH10. Figure 10d shows that the ∆BTWETPf2 of ATMS CH12 over the
north of the mid-latitude region is more significant than those in the equator and southern
mid-latitude areas. Figure 9 also shows that all three latitudinal regions have increasing
uncertainties in ∆BTWETPf2 as ATMS channels vary from CH12 to CH14 and CH19 to CH22.

In [44], it was found that BT biases in the lower stratosphere between the simulated-BT
from COSMIC-1 data and AMSU microwave sounder BT measurements have local time
dependences. Since COSMIC-1 data do not contain orbit drift errors and are not affected
by on-orbit heating and cooling of the satellite component, they can be used to identify
the AMSU time/location-dependent biases for different NOAA missions. In this study,
we further investigate the solar zenith angle (SZA) dependence of ∆BTWETPf2. Since the
SNPP satellite is a Sun-synchronous satellite and COSMIC-2 has an orbital inclination angle
of 24◦, the colocations between COSMIC-2 and ATMS occur mainly around the equator
with SZA < 50 (day) or SZA >130◦ (night) and over the day-night terminator region at
higher latitudes. It is shown in Figure 11 that the SZA-dependences of ∆BTWETPf2 are
pretty weak for ATMS CH08 and CH09. However, for ATMS CH10 and CH12, there is a
trend in BT biases (∆BTWETPf2) as the SZA varies to deviate from the nominal bias value
when the SZA approaches 90 degrees, i.e., near the terminator region. This explains the
latitude-dependent ∆BTWETPf2 seen in Figure 10c,d. As studied in [44], the channel and
SZA-dependent BT biases might be related to the solar irradiation on microwave sounders
and lower stratosphere near the day-night terminator transition region.
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Figure 8. Scatter plots of ATMS BT vs. BTWETPrf (left column, a–e) and ATMS BT vs. BTWETPf2 (right
column, f–j) for ATMS CH08 (panel a,b), CH10 (panel c,d), CH12 (panel e,f), CH13 (panel g,h) and
CH20 (panel i,j), respectively. The data are grouped into three latitude regions: −48◦ to −30◦, −30◦

to 30◦, and 30◦ to 48◦ with color-coding. The data used to make the plots are collocated ATMS and
COSMIC-2 data over the ocean in 2019–10.
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Figure 9. Latitude-dependence of BT biases and uncertainties between CRTM-simulated BT with
UCAR WETPf2 data and SNPP ATMS measurements over three latitude regions for ATMS CH10–14
and CH19–22.

Figure 10. Global distribution of ∆BTWETPf2 over the ocean between simulated BT from UCAR
COSMIC-2 WETPf2 data and ATMS measurements for selected ATMS channels: CH08 (panel a),
CH09 (panel b), CH10 (panel c), and CH12 (panel d).
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Figure 11. SZA-dependence of CRTM-simulated BT vs. ATMS BT bias (∆BTWETPf2) over northern and southern hemispheres
for selected ATMS channels: CH08 (panel a), CH09 (panel b), CH10 (panel c), and CH12 (panel d).

4.3. O-B Bias Trending between COSMIC-2 and ECMWF via ATMS

Healy [52] reported that ECMWF evaluated the impacts of COSMIC-2 by assimilating
the COSMIC-2 data for the period from 28 September 2019, to March 2020. It was found
that the assimilation produced statistically significant impacts for this period on both
short-range and medium-range forecast scores. For the short-range forecast, improvements
appear in various aspects, such as reducing standard deviations of the O-B departures
down to the 700 hPa level and consistent impacts on the forecast fit to a range of observing
systems that are sensitive to tropospheric water vapor. Regarding medium-range forecast,
improvements are obtained to forecast tropical stratospheric zonal winds with a statistical
significance of 10 days and reduce global stratospheric geopotential height and temperature
biases. These positive impacts of COSMIC-2 lead to the operational implementation of
assimilating COSMIC-2 RO data into ECMWF on 25 March 2020. Therefore, it is interesting
to investigate the variation of the O-B bias trend between COSMIC-2 and ECMWF before
and after the assimilation of COSMIC-2 RO data into ECMWF.

In this section, the trending of O-B biases between COSMIC-2 and ECMWF for ATMS
channels are evaluated. To derive the O-B bias trend between COSMIC-2 and ECMWF,
the CRTM-simulated BTECMWF from ECMWF data are first calculated for ATMS channels
of interest. Then, the BT biases ∆BTECMWF = BTECMWF − BTATMS are calculated and
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compared with ∆BTWETPf2 trending to derive O-B biases (∆BTC2-ECMWF) between COSMIC-
2 and ECMWF using the doubled-difference method. In this analysis, the ECMWF is not
interpolated onto C2 locations and time. Figures 12 and 13 show the ∆BTC2-ECMWF trending
from 1 October 2019 to 31 May 2020 for ATMS CH07–14 and CH19–22, respectively. While
the O-B BT bias trends are stable before 25 March 2020, Figure 12 clearly shows the trending
up of the O-B biases and approaches the zero line over the two months afterward for most
ATMS channels with particularly identifiable channels ATMS CH10–CH14. At the end of
May 2020, the O-B bias trending variations for these channels are stabilized. The temporal
variations of O-B biases after 25 March 2020, reveal the impacts of assimilating COSMIC-2
RO data into the ECMWF reanalysis data.

Figure 12. Trending of COSMIC-2 vs. ECMWF O-B BT biases through double-difference between
∆BTCOSMIC-2,WETPf2, and ∆BTECMWF over 8 months from 1 October 2019, to 31 May 2020, for ATMS
CH07–14. The vertical line marks the day (25 March 2020) of assimilating COSMIC-2 RO data
into ECMWF.
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Figure 13. Trending of COSMIC-2 vs. ECMWF O-B BT bias ∆BTC2-ECMWF through double-difference
between ∆BTCOSMIC-2,WETPf2, and ∆BTECMWF over 8 months from 1 October 2019, to 31 May 2020,
for ATMS CH19–22.

To quantitatively evaluate the O-B bias variation before and after the assimilation of
COSMIC-2 RO data, mean O-B BT biases µ(∆BTC2-ECMWF) and uncertainties σ(∆BTC2-ECMWF)
during 15 October 2019 to 24 March 2020 and 15 May 2020 to 31 May 2020 intervals are
calculated. Moreover, the trending slopes D(∆BTC2-ECMWF) over 15 October 2019 to 24 March
2020 and 25 March 2020 to 31 May 2020 intervals are estimated to characterize the impact on
the O-B bias trending variation. The results are summarized in Table 4 and Figure 14.

Table 4. Summary of mean COSMIC-2 vs. ECMWF O-B BT bias µ(∆BTC2-ECMWF) ± σ(∆BTC2-ECMWF) and trending slope
D(∆BTC2-ECMWF) ± 95% CI for ATMS CH07–CH14 and CH19–22 over intervals before and after the assimilation of COSMIC-2
RO data into ECMWF on 25 March 2020.

Channel

µ(∆BTC2-ECMWF) ±
σ(∆BTC2-ECMWF) (K)
(15 October 2019 to

24 March 2020)

D(∆BTC2-ECMWF) ± 95%
CI (K/Year) (15 October
2019 to 24 March 2020)

µ(∆BTC2-ECMWF) ±
σ(∆BTC2-ECMWF) (K)

(15 May 2020 to
31 May 2020)

D(∆BTC2-ECMWF) ± 95%
CI (K/Year) (25 March
2020 to 31 May 2020)

CH07 −0.22 ± 0.42 0.06 ± 0.05 −0.25 ± 0.41 0.14 ± 0.18
CH08 −0.04 ± 0.31 0.06 ± 0.03 −0.06 ± 0.30 0.12 ± 0.10
CH09 −0.12 ± 0.40 0.05 ± 0.04 −0.13 ± 0.39 0.10 ± 0.14
CH10 −0.35 ± 0.64 −0.06 ± 0.06 −0.30 ± 0.66 0.40 ± 0.22
CH11 −0.38 ± 0.66 −0.04 ± 0.06 −0.26 ± 0.66 1.01 ± 0.25
CH12 −0.48 ± 0.71 0.03 ± 0.08 −0.23 ± 0.75 2.05 ± 0.35
CH13 −0.64 ± 0.98 −0.12 ± 0.09 −0.22 ± 1.03 3.21 ± 0.45
CH14 −0.80 ± 1.35 −0.31 ± 0.15 −0.28 ± 1.40 4.02 ± 0.55
CH19 −0.11 ± 1.09 0.22 ± 0.12 −0.08 ± 1.09 0.01 ± 0.36
CH20 0.17 ± 1.45 0.08 ± 0.17 0.21 ± 1.43 0.25 ± 0.57
CH21 0.38 ± 1.96 −0.01 ± 0.24 0.41 ± 1.94 0.35 ± 0.96
CH22 0.60 ± 2.55 −0.11 ± 0.35 0.63 ± 2.53 0.50 ± 1.33
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Figure 14. Summary of (a) mean COSMIC-2 vs. ECMWF O-B BT bias µ(∆BTC2-ECMWF) and (b) trend-
ing slope D(∆BTC2-ECMWF) over intervals before and after the assimilation of COSMIC-2 RO data
into ECMWF on 25 March 2020.

In Figure 14, a significant reduction in absolute O-B BT biases after the assimilation
of COSMIC-2 data into ECMWF on 25 March 2020, can be identified for ATMS CH10 to
CH14 and CH19. In particular, the reduction in O-B biases is more than half for ATMS
CH12–14. The reductions in O-B biases for these channels are realized by increasing the
trending slopes after 25 March 2020, as shown in Figure 14b. It takes about one and a half
months for the O-B biases to be stabilized. At the end of May 2020, the O-B biases for ATMS
CH07–CH14 and CH19–20 are all within 0.3 K. The reduction of biases after 25 March 2020,
confirms the conclusions made by Healy [52] that the assimilation of COSMIC-2 data into
ECMWF has statistically significant positive impacts by improving consistency with the
data from other observing systems that are used in the ECMWF reanalysis.

Comparing the drift values of D(∆BTWETPf2) and D(∆BTC2-ECMWF) listed in Tables 3 and 4,
respectively, the O-B bias stability between COSMIC-2 and ECMWF reanalysis data during
15 October 2019 to 24 March 2020 interval, in general, agrees with those derived from the
COSMIC-2 WETPf2 vs. ATMS comparison for ATMS channels of interest. In terms of BT
biases, the O-B biases µ(∆BTC2-ECMWF) of ATMS CH08 and CH09 are much smaller than the
µ(∆BTWETPf2) listed in Table 3.

5. Discussion
5.1. Using More RO Soundings for ATMS Bias Detection

Past studies on inter-comparison of SNPP ATMS measurements demonstrate the
feasibility of using high-quality COSMIC-1 RO data to calibrate the measurements of
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ATMS sensors. Zou et al. [48] estimated the absolute accuracy of SNPP ATMS TDR data
using COSMIC-1 RO data as input to the CRTM simulation. They demonstrated the
absolute calibration of ATMS upper-level sounding channels. In [16], SNPP ATMS SDR
measurements’ biases to the CRTM simulations are generally less than 0.5 K for ATMS
CH06-13. In a recent study of [47], COSMIC-1 GPS-RO soundings over the ocean were used
as inputs to the CRTM to generate CRTM-simulated BT data for AMSU-A onboard NOAA-
18 NOAA-19, MetOp-A, MetOp-B, and ATMS onboard SNPP and NOAA-20. Monthly
BT bias statistics for each instrument are studied to evaluate the TDR stability among
different microwave sounders. In recent years, only one COSMIC-1 (E6) instrument was
functioning to produce up to about 250 daily soundings, limiting the analysis to monthly
BT bias statistics.

This study demonstrated that the increased number of RO profiles provided by the
COSMIC-2 constellation enables the daily trending of COSMIC-2 vs. ATMS biases. It is
shown that the mean BT biases between SNPP ATMS and CRTM-simulated BT from UCAR
COSMIC-2 WETPrf and WETPf2 products are all within 0.70 K for ATMS CH07-14 and
CH19–21. The mean BT biases between SNPP ATMS and CRTM-simulated BT are within
0.4 K for ATMS CH07, CH10–14, CH19, and CH20. It is also noted that the inter-comparison
of ATMS moisture-sounding channels (CH19–22) was not evaluated in earlier studies. The
residual biases can be due to several factors.

(1) SNPP ATMS BT data errors
The sources of SNPP ATMS BT data error mainly come from radiometric calibrations

such as cold and hot calibrations, nonlinearity in the transfer function and drifts [60],
and associated updates and anomalies. The error in ATMS cold calibration for offset
determination comes from the Rayleigh approximation used for cold space radiation and
the interception of the antenna sidelobe with the Earth and the spacecraft, which can
be affected by solar irradiation. The primary error sources for the hot calibration are
the bias and uncertainty in the calibration target emissivity, physical target temperature
measurement uncertainties, thermal nonuniformity within the target, and radiometric
leakage when viewing the target.

(2) Biases and uncertainties of RO data retrievals
Although RO raw data are traceable to a unit of time, the derived environmental

variables such as temperature and water vapor are not. This paper showed that different
implementations of retrieval algorithms such as UCAR COSMIC-2 WETPrf and WETPf2 to
convert COSMIC-2 RO refractivity to temperature and moisture profiles would affect the
values of simulated ATMS channel BTs from the RO data and result in differences in the
bias and uncertainty characteristics. It is also shown that the BT biases for ATMS CH07
and CH19–CH22 (moisture-sensitive channels) might come from the negative moisture
biases below 5 km in the 1DVAR RO retrieval due to super-refraction [58].

(3) Biases/uncertainties of CRTM simulation
The residual biases and uncertainties of CRTM simulation can be due to several

factors:

i) the CRTM forward model is a fast-radiative transfer model with a regression method
based on line-by-line simulation with representative training profiles. Its simulation
coefficient uncertainty under clear sky conditions come from the gaseous absorption
model and training data;

ii) surface emissivity model and surface temperature used for the simulation for surface-
sensitive channels;

iii) clear sky condition assumption for cloud sensitive channels (the comparison results
may include cloudy sky);

iv) input atmospheric profiles such as the temperature and water vapor profiles from the
RO retrieval.

v) For channels with sounding height at high altitude >35 km, the microwave absorption
line shift due to the Zeeman effect was not considered in the CRTM simulation.

(4) Uncertainties due to data collocation or sampling
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In this paper, the target of interest was chosen over the ocean to ensure the uniformity
of the target, which results in the daily collocation sample number less than 100 per day.
The ERA5 reanalysis data used for simulation are sampled at 0.5 degrees (~50 km), while
ATMS data are sampled at nadir footprint sizes of 31.6 km for CH07–14 and 15.8 km
for CH19–22, respectively. These limiting factors in data collocation number and spatial
resampling can add to uncertainty in the BT bias analysis and trending.

5.2. Uncertainty of Climate Monitoring Using RO Wet Profiles

This study also shows that the long-term stability between UCAR COSMIC-2 WETPf2
data and ATMS measurements are well maintained for ATMS CH07–CH10 with the BT bias
drifts D(∆BTWETPf2) < 0.02 K/year. For ATMS CH19–CH21, the BT bias drifts D(∆BTWETPf2)
are <0.06 K/year, which suggests that RO data can be used to monitor the stability and
calibration updates of these two moisture sounding channels ATMS. The time-series data
analyzed in this paper is over eleven months, which is still relatively short in terms of sta-
bility evaluation. The BT bias drifts are expected to be more accurate with less uncertainty
(especially for ATMS CH12–CH14 and CH21–22) with multi-year time series data. Never-
theless, this paper shows that the well-sustained stability of GNSS RO observations makes
themselves an ideal reference standard to monitor the stability variation in microwave
sounder measurements.

Comparing the two versions of UCAR COSMIC-2 wet profile products, e.g., WETPrf
and WETPf2 [53], shows that different 1DVAR models can result in different bias and
uncertainty statistics. It is demonstrated that BT biases of ATMS CH19–20 have opposite
signs between WETPrf and WETPf2, and there are significant reductions in BT bias un-
certainty for ATMS CH07–14 in the UCAR WETPf2. These differences can be traced to
different a priori models used and other updates in the 1DVAR retrieval algorithm of the
WETPf2 model [53]. It is noted that the UCAR COSMIC-2 WETPrf data is close to the direct
retrieval of temperature, i.e., dry temperature, from COSMIC-2 bending angle/refractivity
data and is less affected by the a priori reanalysis model used in the 1DVAR retrieval
in comparison with the UCAR WETPf2 data. Furthermore, this study shows that the
CRTM-based COSMIC-2 RO vs. ATMS inter-comparison enables evaluating the bias and
uncertainty characteristics in RO 1DVAR retrievals.

In [50], COSMIC-2 RO data’s latitudinal consistency is evaluated and confirmed
through inter-comparison of COSMIC-2 RO with collocated radiosonde refractivity data
from June to October 2019. This study demonstrates the latitudinal consistency between
COSMIC-2 and ATMS with a BT bias difference <0.3 K over three latitudinal regions. This
paper further shows the SZA-dependence of the remnant BT biases between COSMIC-2
and ATMS for the lower stratosphere sounding channels of ATMS.

In Figure 6 and Table 3, it is shown that ATMS low-troposphere channels (CH07 and
CH19–CH22) all have negative BT biases (µ(∆BTWETPf2)). Such systematic negative biases
can come from several sources, such as the inputs, e.g., COSMIC-2 WETPf2 moisture
and temperature data in the low troposphere region, to the CRTM modeling, simulation
coefficients in CRTM ATMS, and ATMS near-surface sounding measurements. For CRTM,
the modeling coefficients are first optimally trained in the least-square sense with the line-
by-Line radiative transfer model and then fed into CRTM. The resulting uncertainty in the
CRTM coefficients may play some role in the bias uncertainty. The analysis in [50] showed
negative moisture biases below 5 km for COSMIC-2 RO retrievals than radiosonde data
due to super-refraction, suggesting that the BT biases for ATMS CH07 and CH19–CH22
might come from the 1DVAR retrieval of moisture-rich low-troposphere profiles.

Further investigations through inter-comparison of COSMIC-2 RO data with ra-
diosonde measurements can help evaluate these biases. To adequately address the negative
moisture biases in RO retrieval, super-refraction or ducting will require improvements
in the 1DVAR retrieval algorithm by possibly incorporating the reconstruction method
introduced in [61,62]. In addition, the simultaneous radio occultation (SRO) method de-
veloped in [63,64] can help compare temporally and spatially matched individual profiles
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measured by different RO sensors. In the SRO method, the time difference between RO
data can be restricted to be within 10 min, which helps evaluate the quality of RO data
through the quantitative comparison of matched profiles.

5.3. Using RO Data for Reanalysis

Healy [52] indicates the positive impacts of COSMIC-2 RO data on short- and medium-
range weather forecasts. In a previous study [65], the global mean biases, i.e., O-B global
mean biases, between COSMIC and reanalysis model data over 8 and 30 km height range
are estimated to be about 0.65K. This study shows the reductions of O-B biases after
assimilating COSMIC-2 data into ECMWF and that the O-B biases for ATMS CH07–CH14
and CH19–20 are all within 0.3 K at the end of May 2020. Our O-B bias trending analysis
shown in Figure 12, Figure 13, and Figure 14 confirm the statistically significant positive
impacts of COSMIC-2 on the ECMWF reanalysis. In addition, the assimilation of COSMIC-
2 data into ECMWF improves consistency with the data ingested into ECMWF from
other observing systems. After assimilating COSMIC-2 data into ECMWF, the double-
differences between observation and simulation using COSMIC-2 retrieval and ECMWF
are significantly reduced. It is difficult to further quantify the contribution to the residual
O-B bias from COSMIC-2 after COSMIC-2 RO data have been assimilated into ECMWF
with the current analysis method.

6. Conclusions

This study evaluates the stability and consistency between COCMIS-2 and SNPP
ATMS measurements through CRTM simulation. Two versions of UCAR COSMIC-2 wet
profiles, e.g., WETPrf and WERPrf2evals, have been used for the CRTM simulations. The
ATMS CH07–14 and CH19–22 measurements, whose peak sounding heights range from
3.2 to 35 km, are used for comparison. In addition, O-B biases between COSMIC-2 and
ECMWF reanalysis data are derived and trended through the double-difference method.
Comparisons of microwave sensor measurements with the CRTM-simulated BT data and
O-B bias trending provide independent evaluations of UCAR COSMIC-2 RO data stability
and consistency. The main conclusions are summarized as follows.

(1) COSMIC-2 data can identify the ATMS calibration variation. The bias trending
shows that COSMIC-2 data captured the calibration updates of SNPP ATMS, i.e.,
antenna reflector emission correction and antenna pattern correction coefficients
update on 15 October 2019, very well. The bias of ATMS relative to COSMIC-2 is
improved for ATMS CH10–14 and CH19–20 after the calibration update.

(2) Differences between UCAR COSMIC-2 WETPrf and WETPf2 can be identified
through comparison with ATMS. This paper shows the mean biases between BT
measurements of SNPP ATMS and CRTM-simulated BT from two versions of UCAR
COSMIC-2 wet profiles, e.g., WETPf2 and WETPrf, are all within 0.4 K for ATMS
CH07, CH10–14, CH19, and CH20 (see Figure 6 and Table 3). The COSMIC-2
vs. ATMS BT biases of ATMS CH19 and CH20 have an opposite sign between
µ(∆BTWETPrf) and µ(∆BTWETPf2). The direct comparison between COSMIC-2 WETPf2
and WETPrf data shows distinct differences in both temperature and humidity for
the height region below 7 km (Figure 7). Therefore, the differences between UCAR
COSMIC-2 WETPrf and WETPf2 1DVAR retrieval algorithms cause differences in
the retrieved temperature and humidity profiles identified in the COSMIC-2 vs.
ATMS comparison. In terms of BT bias uncertainties of UCAR COSMIC-2 wet profile
products, it is found that there are significant reductions in σ(∆BTWETPf2) for ATMS
CH07-14 in comparison with σ(∆BTWETPrf). More than two times of reductions in
σ(∆BTWETPf2) for ATMS CH12–14 are observed. The substantial improvements in the
σ(∆BTWETPf2) can be attributed to the 1DVAR algorithm updates implemented for the
UCAR WETPf2 1DVAR retrieval algorithm [53]. It is suggested that the a priori model
used in the 1DVAR retrieval, such as GFS or ECMWF model that has assimilated
ATMS data to a different extent, can directly impact the variation of σ(∆BT).
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(3) Precision and stability of COSMIC-2 data were evaluated. This paper shows that
the UCAR COSMIC-2 WETPrf data is less affected by the a priori reanalysis model
used in the 1DVAR retrieval and is close to the direct retrieval of temperature, i.e., dry
temperature, from COSMIC-2 bending angle/refractivity data. Our analysis shows
that the µ(∆BTWETPrf) varies between 0.1 and 0.3 K for ATMS CH10 to CH14 and
CH19–21 with increasing uncertainty magnitude, which can be due to the increasing
NEDT of these ATMS channels. The trending of COSMIC-2 vs. ATMS BT biases
shows that overall long-term stability consistency between COSMIC-2 and SNPP
ATMS are well maintained after 15 October 2019. The stability between modeled
BT from COSMIC-2 and ATMS measurements is consistent with the drift of BT bias
D(∆BTWETPf2) < 0.02 K/year for ATMS CH07–10. For ATMS CH19–CH21, the BT
bias drifts D(∆BTWETPf2) are <0.06 K/year, which shows the promising aspect of
using COSMIC-2 wet profiles for the calibration of these two ATMS water vapor
channels. The drifts of BT bias of ATMS CH13–14 with peak sounding height above
30 km and ATMS moisture sounding channels CH22 have larger uncertainties, which
can be reduced with more extended time series of BT biases. It is shown that the
well-sustained stability of COSMIC-2 RO data makes it well serves as the reference
standard to detect and monitor the stability variation of sounding channels similar to
ATMS CH7–10 and CH19–20 on other microwave-sounding sensors.

(4) Analysis of latitude and SZA dependence of COSMIC-2 vs. ATMS biases help
identify the SZA-dependent bias variation of ATMS near the day–night termi-
nator region. This paper also shows that COSMIC-2 WETPf2 data are generally
consistent with ATMS measurements over three latitude regions with µ(∆BTWETPf2)
difference within 0.3 K for all of the ATMS channels of interest. It further shows the
SZA-dependence of the remnant BT biases between COSMIC-2 and ATMS for the
lower stratosphere sounding channels of ATMS. COSMIC-2 can identify the ATMS
seasonal and latitude-dependent bias, mainly due to the SZA-dependent biases from
ATMS near the day-night terminator region.

(5) O-B bias trending can help evaluate the impacts of assimilation of COSMIC-2 RO
data into ECMWF. The trending of O-B biases between COSMIC-2 and ECMWF for
ATMS channels quantitatively shows the impacts of the assimilation of COSMIC-2
RO data into ECMWF on 25 March 2020. It is shown that significant reduction in
the absolute O-B BT biases for ATMS CH10 to CH14 and CH19 after assimilating
COSMIC-2 data into ECMWF. For ATMS CH12–14, the reduction in O-B biases is
more than half (Table 4 and Figure 14). After 25 March 2020, the decrease in O-B
biases confirms that the assimilation of COSMIC-2 data into ECMWF has statistically
significant positive impacts on the ECMWF reanalysis and improves consistency with
the data from other observing systems, as shown in [52,66].

RO remote sensing technology provides long-term stable temperature, water vapor,
and pressure profiles with high accuracy, precision, and vertical resolution. Both the
RO sensor and microwave radiometer provide soundings of the atmospheric temperature
profiles and have essential NWP systems roles. The inter-comparison of RO and microwave
sounder measurements through CRTM simulation enables monitoring of microwave-
sounding sensors’ stability variation; helps identify the difference in the RO wet profile
data originated from difference in the 1DVAR retrieval algorithm and ensures the quality
of RO and microwave data assimilated into the NWP model. This study was limited
to oceans. In future studies, we will extend the model to investigate the challenges,
feasibilities, and uncertainties in the comparison of ATMS with RO measurements for
sounding channels over other surface types such as land, which can provide a more
comprehensive evaluation of the benefits of COSMIC-1 and COSMIC-2 data coverage
under various weather conditions. With COSMIC-2 being operational and stable, the daily
RO profiles from COSMIC-2 are expected to improve short and medium-range global
numerical weather predictions and help construct consistent climate temperature records.
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